DagsterDocs

Source code for dagster.core.execution.context.input

from typing import TYPE_CHECKING, Any, Dict, Optional, Union

from dagster import check
from dagster.core.errors import DagsterInvariantViolationError
from dagster.utils.backcompat import experimental_fn_warning

if TYPE_CHECKING:
    from .output import OutputContext
    from dagster.core.definitions import SolidDefinition
    from dagster.core.log_manager import DagsterLogManager
    from dagster.core.types.dagster_type import DagsterType
    from dagster.core.execution.context.system import StepExecutionContext
    from dagster.core.definitions.resource import Resources


[docs]class InputContext: """ The ``context`` object available to the load_input method of :py:class:`RootInputManager`. Attributes: name (Optional[str]): The name of the input that we're loading. pipeline_name (Optional[str]): The name of the pipeline. solid_def (Optional[SolidDefinition]): The definition of the solid that's loading the input. config (Optional[Any]): The config attached to the input that we're loading. metadata (Optional[Dict[str, Any]]): A dict of metadata that is assigned to the InputDefinition that we're loading for. upstream_output (Optional[OutputContext]): Info about the output that produced the object we're loading. dagster_type (Optional[DagsterType]): The type of this input. log (Optional[DagsterLogManager]): The log manager to use for this input. resource_config (Optional[Dict[str, Any]]): The config associated with the resource that initializes the RootInputManager. resources (Optional[Resources]): The resources required by the resource that initializes the input manager. If using the :py:func:`@root_input_manager` decorator, these resources correspond to those requested with the `required_resource_keys` parameter. """ def __init__( self, name: Optional[str] = None, pipeline_name: Optional[str] = None, solid_def: Optional["SolidDefinition"] = None, config: Optional[Any] = None, metadata: Optional[Dict[str, Any]] = None, upstream_output: Optional["OutputContext"] = None, dagster_type: Optional["DagsterType"] = None, log_manager: Optional["DagsterLogManager"] = None, resource_config: Optional[Dict[str, Any]] = None, resources: Optional[Union["Resources", Dict[str, Any]]] = None, step_context: Optional["StepExecutionContext"] = None, ): from dagster.core.definitions.resource import Resources, IContainsGenerator from dagster.core.execution.build_resources import build_resources self._name = name self._pipeline_name = pipeline_name self._solid_def = solid_def self._config = config self._metadata = metadata self._upstream_output = upstream_output self._dagster_type = dagster_type self._log = log_manager self._resource_config = resource_config self._step_context = step_context if isinstance(resources, Resources): self._resources_cm = None self._resources = resources else: self._resources_cm = build_resources( check.opt_dict_param(resources, "resources", key_type=str) ) self._resources = self._resources_cm.__enter__() # pylint: disable=no-member self._resources_contain_cm = isinstance(self._resources, IContainsGenerator) self._cm_scope_entered = False def __enter__(self): if self._resources_cm: self._cm_scope_entered = True return self def __exit__(self, *exc): if self._resources_cm: self._resources_cm.__exit__(*exc) # pylint: disable=no-member def __del__(self): if self._resources_cm and self._resources_contain_cm and not self._cm_scope_entered: self._resources_cm.__exit__(None, None, None) # pylint: disable=no-member @property def name(self) -> Optional[str]: return self._name @property def pipeline_name(self) -> Optional[str]: return self._pipeline_name @property def solid_def(self) -> Optional["SolidDefinition"]: return self._solid_def @property def config(self) -> Optional[Any]: return self._config @property def metadata(self) -> Optional[Dict[str, Any]]: return self._metadata @property def upstream_output(self) -> Optional["OutputContext"]: return self._upstream_output @property def dagster_type(self) -> Optional["DagsterType"]: return self._dagster_type @property def log(self) -> Optional["DagsterLogManager"]: return self._log @property def resource_config(self) -> Optional[Dict[str, Any]]: return self._resource_config @property def resources(self) -> Optional["Resources"]: if self._resources_cm and self._resources_contain_cm and not self._cm_scope_entered: raise DagsterInvariantViolationError( "At least one provided resource is a generator, but attempting to access " "resources outside of context manager scope. You can use the following syntax to " "open a context manager: `with build_input_context(...) as context:`" ) return self._resources @property def step_context(self) -> Optional["StepExecutionContext"]: return self._step_context
[docs]def build_input_context( name: Optional[str] = None, config: Optional[Any] = None, metadata: Optional[Dict[str, Any]] = None, upstream_output: Optional["OutputContext"] = None, dagster_type: Optional["DagsterType"] = None, resource_config: Optional[Dict[str, Any]] = None, resources: Optional[Dict[str, Any]] = None, ) -> "InputContext": """Builds input context from provided parameters. ``build_input_context`` can be used as either a function, or a context manager. If resources that are also context managers are provided, then ``build_input_context`` must be used as a context manager. Args: name (Optional[str]): The name of the input that we're loading. config (Optional[Any]): The config attached to the input that we're loading. metadata (Optional[Dict[str, Any]]): A dict of metadata that is assigned to the InputDefinition that we're loading for. upstream_output (Optional[OutputContext]): Info about the output that produced the object we're loading. dagster_type (Optional[DagsterType]): The type of this input. resource_config (Optional[Dict[str, Any]]): The resource config to make available from the input context. This usually corresponds to the config provided to the resource that loads the input manager. resources (Optional[Dict[str, Any]]): The resources to make available from the context. For a given key, you can provide either an actual instance of an object, or a resource definition. Examples: .. code-block:: python build_input_context() with build_input_context(resources={"foo": context_manager_resource}) as context: do_something """ from dagster.core.execution.context.output import OutputContext from dagster.core.types.dagster_type import DagsterType from dagster.core.execution.context_creation_pipeline import initialize_console_manager experimental_fn_warning("build_input_context") name = check.opt_str_param(name, "name") metadata = check.opt_dict_param(metadata, "metadata", key_type=str) upstream_output = check.opt_inst_param(upstream_output, "upstream_output", OutputContext) dagster_type = check.opt_inst_param(dagster_type, "dagster_type", DagsterType) resource_config = check.opt_dict_param(resource_config, "resource_config", key_type=str) resources = check.opt_dict_param(resources, "resources", key_type=str) return InputContext( name=name, pipeline_name=None, solid_def=None, config=config, metadata=metadata, upstream_output=upstream_output, dagster_type=dagster_type, log_manager=initialize_console_manager(None), resource_config=resource_config, resources=resources, step_context=None, )