import warnings
from collections import namedtuple
from datetime import datetime
from enum import Enum
from typing import NamedTuple
from dagster import check
from dagster.core.storage.tags import PARENT_RUN_ID_TAG, ROOT_RUN_ID_TAG
from dagster.core.utils import make_new_run_id
from dagster.serdes import DefaultNamedTupleSerializer, whitelist_for_serdes
from .tags import (
BACKFILL_ID_TAG,
PARTITION_NAME_TAG,
PARTITION_SET_TAG,
RESUME_RETRY_TAG,
SCHEDULE_NAME_TAG,
SENSOR_NAME_TAG,
)
[docs]@whitelist_for_serdes
class PipelineRunStatus(Enum):
"""The status of pipeline execution."""
QUEUED = "QUEUED"
NOT_STARTED = "NOT_STARTED"
MANAGED = "MANAGED"
STARTING = "STARTING"
STARTED = "STARTED"
SUCCESS = "SUCCESS"
FAILURE = "FAILURE"
CANCELING = "CANCELING"
CANCELED = "CANCELED"
# These statuses that indicate a run may be using compute resources
IN_PROGRESS_RUN_STATUSES = [
PipelineRunStatus.STARTING,
PipelineRunStatus.STARTED,
PipelineRunStatus.CANCELING,
]
# This serves as an explicit list of run statuses that indicate that the run is not using compute
# resources. This and the enum above should cover all run statuses.
NON_IN_PROGRESS_RUN_STATUSES = [
PipelineRunStatus.QUEUED,
PipelineRunStatus.NOT_STARTED,
PipelineRunStatus.SUCCESS,
PipelineRunStatus.FAILURE,
PipelineRunStatus.MANAGED,
PipelineRunStatus.CANCELED,
]
@whitelist_for_serdes
class PipelineRunStatsSnapshot(
namedtuple(
"_PipelineRunStatsSnapshot",
(
"run_id steps_succeeded steps_failed materializations "
"expectations enqueued_time launch_time start_time end_time"
),
)
):
def __new__(
cls,
run_id,
steps_succeeded,
steps_failed,
materializations,
expectations,
enqueued_time,
launch_time,
start_time,
end_time,
):
return super(PipelineRunStatsSnapshot, cls).__new__(
cls,
run_id=check.str_param(run_id, "run_id"),
steps_succeeded=check.int_param(steps_succeeded, "steps_succeeded"),
steps_failed=check.int_param(steps_failed, "steps_failed"),
materializations=check.int_param(materializations, "materializations"),
expectations=check.int_param(expectations, "expectations"),
enqueued_time=check.opt_float_param(enqueued_time, "enqueued_time"),
launch_time=check.opt_float_param(launch_time, "launch_time"),
start_time=check.opt_float_param(start_time, "start_time"),
end_time=check.opt_float_param(end_time, "end_time"),
)
class PipelineRunSerializer(DefaultNamedTupleSerializer):
@classmethod
def value_from_storage_dict(cls, storage_dict, _klass):
# called by the serdes layer, delegates to helper method with expanded kwargs
return pipeline_run_from_storage(**storage_dict)
def pipeline_run_from_storage(
pipeline_name=None,
run_id=None,
run_config=None,
mode=None,
solid_selection=None,
solids_to_execute=None,
step_keys_to_execute=None,
status=None,
tags=None,
root_run_id=None,
parent_run_id=None,
pipeline_snapshot_id=None,
execution_plan_snapshot_id=None,
# backcompat
environment_dict=None,
previous_run_id=None,
selector=None,
solid_subset=None,
reexecution_config=None, # pylint: disable=unused-argument
external_pipeline_origin=None,
**kwargs,
):
# serdes log
# * removed reexecution_config - serdes logic expected to strip unknown keys so no need to preserve
# * added pipeline_snapshot_id
# * renamed previous_run_id -> parent_run_id, added root_run_id
# * added execution_plan_snapshot_id
# * removed selector
# * added solid_subset
# * renamed solid_subset -> solid_selection, added solids_to_execute
# * renamed environment_dict -> run_config
# back compat for environment dict => run_config
if environment_dict:
check.invariant(
not run_config,
"Cannot set both run_config and environment_dict. Use run_config parameter.",
)
run_config = environment_dict
# back compat for previous_run_id => parent_run_id, root_run_id
if previous_run_id and not (parent_run_id and root_run_id):
parent_run_id = previous_run_id
root_run_id = previous_run_id
# back compat for selector => pipeline_name, solids_to_execute
selector = check.opt_inst_param(selector, "selector", ExecutionSelector)
if selector:
check.invariant(
pipeline_name is None or selector.name == pipeline_name,
(
"Conflicting pipeline name {pipeline_name} in arguments to PipelineRun: "
"selector was passed with pipeline {selector_pipeline}".format(
pipeline_name=pipeline_name, selector_pipeline=selector.name
)
),
)
if pipeline_name is None:
pipeline_name = selector.name
check.invariant(
solids_to_execute is None or set(selector.solid_subset) == solids_to_execute,
(
"Conflicting solids_to_execute {solids_to_execute} in arguments to PipelineRun: "
"selector was passed with subset {selector_subset}".format(
solids_to_execute=solids_to_execute, selector_subset=selector.solid_subset
)
),
)
# for old runs that only have selector but no solids_to_execute
if solids_to_execute is None:
solids_to_execute = frozenset(selector.solid_subset) if selector.solid_subset else None
# back compat for solid_subset => solids_to_execute
check.opt_list_param(solid_subset, "solid_subset", of_type=str)
if solid_subset:
solids_to_execute = frozenset(solid_subset)
# warn about unused arguments
if len(kwargs):
warnings.warn(
"Found unhandled arguments from stored PipelineRun: {args}".format(args=kwargs.keys())
)
return PipelineRun( # pylint: disable=redundant-keyword-arg
pipeline_name=pipeline_name,
run_id=run_id,
run_config=run_config,
mode=mode,
solid_selection=solid_selection,
solids_to_execute=solids_to_execute,
step_keys_to_execute=step_keys_to_execute,
status=status,
tags=tags,
root_run_id=root_run_id,
parent_run_id=parent_run_id,
pipeline_snapshot_id=pipeline_snapshot_id,
execution_plan_snapshot_id=execution_plan_snapshot_id,
external_pipeline_origin=external_pipeline_origin,
)
[docs]@whitelist_for_serdes(serializer=PipelineRunSerializer)
class PipelineRun(
namedtuple(
"_PipelineRun",
(
"pipeline_name run_id run_config mode solid_selection solids_to_execute "
"step_keys_to_execute status tags root_run_id parent_run_id "
"pipeline_snapshot_id execution_plan_snapshot_id external_pipeline_origin"
),
)
):
"""Serializable internal representation of a pipeline run, as stored in a
:py:class:`~dagster.core.storage.runs.RunStorage`.
"""
def __new__(
cls,
pipeline_name=None,
run_id=None,
run_config=None,
mode=None,
solid_selection=None,
solids_to_execute=None,
step_keys_to_execute=None,
status=None,
tags=None,
root_run_id=None,
parent_run_id=None,
pipeline_snapshot_id=None,
execution_plan_snapshot_id=None,
external_pipeline_origin=None,
):
check.invariant(
(root_run_id is not None and parent_run_id is not None)
or (root_run_id is None and parent_run_id is None),
(
"Must set both root_run_id and parent_run_id when creating a PipelineRun that "
"belongs to a run group"
),
)
# a frozenset which contains the names of the solids to execute
check.opt_set_param(solids_to_execute, "solids_to_execute", of_type=str)
# a list of solid queries provided by the user
# possible to be None when only solids_to_execute is set by the user directly
check.opt_list_param(solid_selection, "solid_selection", of_type=str)
check.opt_list_param(step_keys_to_execute, "step_keys_to_execute", of_type=str)
# Placing this with the other imports causes a cyclic import
# https://github.com/dagster-io/dagster/issues/3181
from dagster.core.host_representation.origin import ExternalPipelineOrigin
if status == PipelineRunStatus.QUEUED:
check.inst_param(
external_pipeline_origin,
"external_pipeline_origin",
ExternalPipelineOrigin,
"external_pipeline_origin is required for queued runs",
)
return super(PipelineRun, cls).__new__(
cls,
pipeline_name=check.opt_str_param(pipeline_name, "pipeline_name"),
run_id=check.opt_str_param(run_id, "run_id", default=make_new_run_id()),
run_config=check.opt_dict_param(run_config, "run_config", key_type=str),
mode=check.opt_str_param(mode, "mode"),
solid_selection=solid_selection,
solids_to_execute=solids_to_execute,
step_keys_to_execute=step_keys_to_execute,
status=check.opt_inst_param(
status, "status", PipelineRunStatus, PipelineRunStatus.NOT_STARTED
),
tags=check.opt_dict_param(tags, "tags", key_type=str, value_type=str),
root_run_id=check.opt_str_param(root_run_id, "root_run_id"),
parent_run_id=check.opt_str_param(parent_run_id, "parent_run_id"),
pipeline_snapshot_id=check.opt_str_param(pipeline_snapshot_id, "pipeline_snapshot_id"),
execution_plan_snapshot_id=check.opt_str_param(
execution_plan_snapshot_id, "execution_plan_snapshot_id"
),
external_pipeline_origin=check.opt_inst_param(
external_pipeline_origin, "external_pipeline_origin", ExternalPipelineOrigin
),
)
def with_status(self, status):
if status == PipelineRunStatus.QUEUED:
# Placing this with the other imports causes a cyclic import
# https://github.com/dagster-io/dagster/issues/3181
from dagster.core.host_representation.origin import ExternalPipelineOrigin
check.inst(
self.external_pipeline_origin,
ExternalPipelineOrigin,
"external_pipeline_origin is required for queued runs",
)
return self._replace(status=status)
def with_mode(self, mode):
return self._replace(mode=mode)
def with_tags(self, tags):
return self._replace(tags=tags)
def get_root_run_id(self):
return self.tags.get(ROOT_RUN_ID_TAG)
def get_parent_run_id(self):
return self.tags.get(PARENT_RUN_ID_TAG)
@property
def is_finished(self):
return (
self.status == PipelineRunStatus.SUCCESS
or self.status == PipelineRunStatus.FAILURE
or self.status == PipelineRunStatus.CANCELED
)
@property
def is_success(self):
return self.status == PipelineRunStatus.SUCCESS
@property
def is_failure(self):
return self.status == PipelineRunStatus.FAILURE or self.status == PipelineRunStatus.CANCELED
@property
def is_resume_retry(self):
return self.tags.get(RESUME_RETRY_TAG) == "true"
@property
def previous_run_id(self):
# Compat
return self.parent_run_id
@staticmethod
def tags_for_schedule(schedule):
return {SCHEDULE_NAME_TAG: schedule.name}
@staticmethod
def tags_for_sensor(sensor):
return {SENSOR_NAME_TAG: sensor.name}
@staticmethod
def tags_for_backfill_id(backfill_id):
return {BACKFILL_ID_TAG: backfill_id}
@staticmethod
def tags_for_partition_set(partition_set, partition):
return {PARTITION_NAME_TAG: partition.name, PARTITION_SET_TAG: partition_set.name}
@whitelist_for_serdes
class PipelineRunsFilter(
namedtuple(
"_PipelineRunsFilter", "run_ids pipeline_name statuses tags snapshot_id updated_after"
)
):
def __new__(
cls,
run_ids=None,
pipeline_name=None,
statuses=None,
tags=None,
snapshot_id=None,
updated_after=None,
):
return super(PipelineRunsFilter, cls).__new__(
cls,
run_ids=check.opt_list_param(run_ids, "run_ids", of_type=str),
pipeline_name=check.opt_str_param(pipeline_name, "pipeline_name"),
statuses=check.opt_list_param(statuses, "statuses", of_type=PipelineRunStatus),
tags=check.opt_dict_param(tags, "tags", key_type=str, value_type=str),
snapshot_id=check.opt_str_param(snapshot_id, "snapshot_id"),
updated_after=check.opt_inst_param(updated_after, "updated_after", datetime),
)
@staticmethod
def for_schedule(schedule):
return PipelineRunsFilter(tags=PipelineRun.tags_for_schedule(schedule))
@staticmethod
def for_partition(partition_set, partition):
return PipelineRunsFilter(tags=PipelineRun.tags_for_partition_set(partition_set, partition))
@staticmethod
def for_sensor(sensor):
return PipelineRunsFilter(tags=PipelineRun.tags_for_sensor(sensor))
@staticmethod
def for_backfill(backfill_id):
return PipelineRunsFilter(tags=PipelineRun.tags_for_backfill_id(backfill_id))
class RunRecord(NamedTuple):
"""Internal representation of a run record, as stored in a
:py:class:`~dagster.core.storage.runs.RunStorage`.
"""
storage_id: int
pipeline_run: PipelineRun
create_timestamp: datetime
update_timestamp: datetime
###################################################################################################
# GRAVEYARD
#
# -|-
# |
# _-'~~~~~`-_
# .' '.
# | R I P |
# | |
# | Execution |
# | Selector |
# | |
# | |
###################################################################################################
@whitelist_for_serdes
class ExecutionSelector(namedtuple("_ExecutionSelector", "name solid_subset")):
"""
Kept here to maintain loading of PipelineRuns from when it was still alive.
"""
def __new__(cls, name, solid_subset=None):
return super(ExecutionSelector, cls).__new__(
cls,
name=check.str_param(name, "name"),
solid_subset=None
if solid_subset is None
else check.list_param(solid_subset, "solid_subset", of_type=str),
)